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A Suggested Technique for Measuring Stress 
Relaxation Modulus and Creep Compliance 
and for Testing Linear Viscoelastic Theory 

Stress relaxation is measured by subjecting a specimen 
at time zero to  a suddenly applied strain, E, which is there- 
after held constant. The stress, u, is measured as a function 
of time, and the quotient u ( t ) / ~  is the relaxation modulus, 
G(t) .  Creep is measured by subjecting a specimen a t  time 
zero to a suddenly applied stress, u, which is thereafter 
held constant. The strain, E, is measured as a function of 
time, and the quotient e ( t ) / u  is the creep compliance, J ( t ) .  

In a stress relaxation experiment, it  is difficult to measure 
the stress in the specimen without changing the strain, and 
most methods to date accept this disturbance but try to keep 
it negligibly small. In this letter, we shall show how some 
relations in the theory of linear viscoelasticity may be used 
to  give the relaxation modulus and the creep compliance 
from data taken from a mixed system, by which we mean a 
system in which neither the stress nor the strain is constant. 

Theory and Suggested Technique 

In a linear viscoelastic material, the Laplace transforms 
of the stress and strain may be related through the trans- 
forms of either the relaxation modulus or, the creep com- 
pliance, as follows:' 

LU(1) = sLG(t)L€((t) (1) 

LE(t) = sLu(t)LJ(t) (2) 

Fig. 1. ( a )  The unstressed system at t < 0. ( b )  The sys- 
tem at 1 > 0. The deformation p o  is held constant, and the 
other, dt), is observed a8 a function of time. 

where L indicates the transform. Also 

LG(t)W(t)  = I/sP (3) 

Now let us consider the arrangement of Figure 1. A 
torsion wire of known relaxation modulus Gl(t) is attached 
to  the specimen whose unknown relaxation modulus G2(1) is 
desired. ( I t  will be of advantage if the wire is as nearly 
perfectly elastic as possible, when 4 ( t )  will be nearly 
constant.) The relaxation torsional stiffness, M ( t ) ,  of the 
wire of radius r is 

M ( t )  = Gi(t)Ki/Ai 

where 

K = irr4/2 

Similarly, that of the specimen is and A denotes length. 

N ( t )  = Gz(t)K*/Az 

Then eq. (1) becomes 

LT(1) = sLM(t )Ldt )  

where T is torque and pis  the twist in radians. 
= p = 0, and the system is stress-free. 

At  time t = 0, the upper end of the wire is suddenly twisted 
to po, as a result of which the junction between the wire and 
the specimen starts a wandering angular history p(t) .  
This is the quantity to be observed during the experiment. 
The twist in the wire is, then, 90 - p(t) .  The torque is the 
same in both wire and specimen, and its transform is, for 
the wire, 

Before time zero, 

LT(t) = sLM(.t)L[m - dt)] (4a) 

and for the specimen, 

LT(t)  = sLN( t )Ld t )  (4b) 

whence 

LM(t)L[m - (p(t)l = LN(t )Ldt )  (5) 
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whose inverse is 

All the functions in the integrands are known except N ( T ) .  
The integral on the left may therefore be evaluatcd nu- 
merically as a function of t ,  after which the integral on the 
right may be evaluated for N ( T ) ~  when Gz(t) is merely 
A2NZ(t)/K2. If J ( t )  also is wanted, it may be found by a 
similar numerical solution of the inverse of eq. (a), 

f: J(r)G( t  - 7)dr  = t 

Suppose the wire relaxes very slowly, as compared with 
the specimen. If M ( t )  >> N ( t ) ,  the wire will be very 
stiff, At) = m, and the situation approximates that of the 
classic stress relaxation experiment. If, on the other hand, 
M ( t )  << N(t ) ,  [m - At)] will be large in relation to At), 
small changes in At) will not change the stress very murh, 
and the classic creep experiment is approached. Thus by 
changing M ( t )  we may cover a range of experiments from 
nearly pure relaxation to nearly pure creep, from all of 
which we should derive the same function N ( t ) .  This, then, 
provides a way of determining just how good the linear vis- 
coelastic theory is for the given material and conditions. 

The technique is not limited to torsion, but may be used in 

tension, compression, simple shear, or bending. The essen- 
tial thing is that a fixed deformation (in the torsional case, 
n) be shared between the known and the unknown sub- 
stances, with the movement of the unrestrained junction 
between them suitably measurable. 

In cases where the linear theory is applicable, eq. (6) can 
be used to predict movement in apparatus assemblies of two 
materials whose relaxation characteristics are knon-n. 
In this case, p(t)  is the unknown function that is sought. 
Also, the relaxation of stress could be found by using eqs. 
(4a) or (5h). More complicated assemblies can be treated, 
with corresponding incrpase in complexity but no difference 
in principle. 
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